

Formations en plasturgie

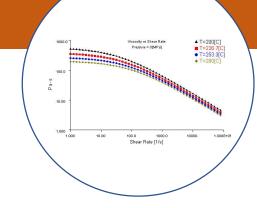
Dr. Jean François Luyé

Rhéologie des matières plastiques (module 1)

Objectifs

Acquérir les notions de base de la rhéologie du moulage par injection.

Connaître l'influence des principaux paramètres vis-à-vis de la phase de remplissage.


Public et prérequis pour cette formation

- ✓ Techniciens et techniciens supérieurs pratiquant le moulage par injection.
- ✓ Techniciens de la qualité, chefs de projets et concepteurs possédant les notions de base de l'injection.
- ✓ Ingénieurs plasturgistes désireux de mettre à jour leurs connaissances.

Programme (2 jours)

- ✓ Base théorique de la rhéologie des polymères : viscosité, vitesse d'écoulement, cisaillement, élongation, poiseuille.
- ✓ Lois de comportement : newtonien, rhéofluidifiant, piézodépendance, thermodépendance, viscoélasticité, temps de relaxation.
- ✓ Aspect thermique de l'écoulement : gaine solide, dissipation visqueuse, effet de la compressibilité.
- ✓ Effet des fibres de renfort : contrainte seuil, couplage fibres-matrice, anisotropie de l'écoulement.
- ✓ Méthodes de caractérisation de la viscosité de cisaillement à bas et à haut gradient de cisaillement.
- ✓ Analyse rhéologique du remplissage : notion d'équilibrage, pertes de charge, effet d'hésitation, jet libre, lignes de soudure.

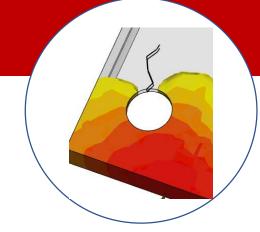
- ✓ Ce cours est interactif. Il est basé sur un échange entre les participants et le formateur.
- √ L'approche théorique est illustrée par des exemples de simulations du remplissage Moldflow.
- ✓ Un support de cours est fourni pour une prise de notes personnalisées.
- Evaluation du cours : Questionnaire a choix multiple (QCM).

Savoir analyser les défauts de moulage (Module 2)

Objectifs

Comprendre l'origine des défauts de moulage des pièces plastiques injectées.

Connaître les leviers de conception et de moulage pour minimiser les défauts d'apect.


Public et prérequis pour cette formation

- ✓ Techniciens et techniciens supérieurs pratiquant le moulage par injection.
- ✓ Techniciens de la qualité, chefs de projets et concepteurs possédant les notions de base de l'injection.

Programme (1 jour)

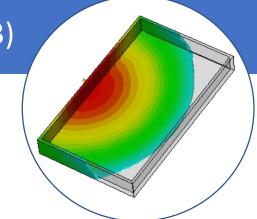
- ✓ Rappel concernant la matière : viscosité, cisaillement, élongation, viscoélasticité.
- ✓ Lignes de soudure : formation, impact vis-à-vis de la tenue mécanique.
- ✓ Trace d'écoulement, jet libre, défaut de brillance; changement de couleur, délaminage.
- ✓ Trace de brûlure, points noirs.
- ✓ Déséquilibre du remplissage, effet d'hésitation, écoulement interne, incomplet.
- ✓ Surcompactage, toilage, retassure, porosité.
- ✓ Déformations : analyse de l'origine des déformations.

- ✓ Ce cours est interactif. Il est basé sur un échange entre les participants et le formateur.
- √ L'approche théorique est illustrée par des exemples de simulations Moldflow.
- ✓ Un support de cours est fourni pour une prise de notes personnalisées.
- Évaluation du cours : Questionnaire à choix multiples (QCM).

La simulation du remplissage - compactage (Module 3)

Objectifs

- ✓ Savoir simuler la phase de remplissage et de compactage refroidissement.
- ✓ Savoir définir un plan d'action pour réduire le nombre d'itérations.
- ✓ Savoir analyser les résultats de simulation et construire un rapport.


Public et prérequis pour cette formation

✓ Utilisateurs de la simulation ayant déjà suivi la formation Autodesk Moldflow.

Programme (1 jour)

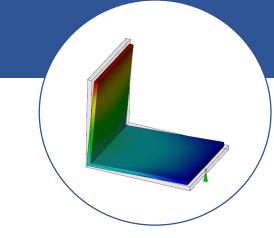
- ✓ Importation des modèles CAO et maillage 2D, 3D.
- ✓ Modélisation des canaux d'alimentation et des circuits de refroidissement du moule.
- ✓ Équilibrage d'un moule multi-empreintes. Injection séquentielle. Surmoulage d'inserts.
- ✓ Comment déterminer le nombre et la position des points d'injection. Diamètre du seuil et des canaux ?
- ✓ Comment régler la phase de compactage-maintien-refroidissement.
- ✓ Calcul du temps de cycle.
- ✓ Analyse rapide des déformations.

- \checkmark Ce cours est interactif. Il est basé sur un échange entre les participants et le formateur.
- √ L'approche théorique est illustrée par des exemples de simulations Moldflow.
- ✓ Un support de cours est fourni pour une prise de notes personnalisées.
- Évaluation du cours Questionnaire à choix multiples (QCM).

La simulation des déformations (Module 4)

Objectifs

- ✓ Savoir simuler et interpréter la déformation des pièces plastiques injectées.
- ✓ Connaître les leviers de conception et de moulage pour minimiser les déformations.


Public et prérequis pour cette formation

✓ Concepteurs et utilisateurs de la simulation possédant les notions de base de l'injection.

Programme (1 jour)

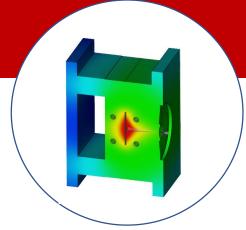
- ✓ L'origine des déformations : approche thermomécanique.
- ✓ L'anisotropie du retrait volumique. Relation contrainte, retrait et déformation.
- ✓ Comment paramétrer une analyse en petite déformation : modèle fibre neutre et modèle 3D.
- ✓ Les trois méthodes de calcul : stress, strain et crims.
- ✓ Analyse et grande déformation et analyse en flambage.
- ✓ Outils d'analyse : anchors, best fit, repère local, ovalisation.

- ✓ Ce cours est interactif. Il est basé sur un échange entre les participants et le formateur.
- ✓ L'approche théorique est illustrée par des exemples de simulations Moldflow.
- ✓ Un support de cours est fourni pour une prise de notes personnalisées.
- Évaluation du cours : Questionnaire à choix multiples (QCM).

La régulation des outillages d'injection (Module 5)

Objectifs

- ✓ Acquérir les notions de base de la régulation d'un outillage d'injection.
- ✓ Connaître l'influence des principaux paramètres vis-à-vis du refroidissement des pièces injectées.


Public et prérequis pour cette formation

- ✓ Techniciens et techniciens supérieurs pratiquant le moulage par injection.
- ✓ Chefs de projets et concepteurs possédant les notions de base de l'injection.
- ✓ Moulistes.

Programme (2 jours)

- ✓ Présentation des trois composantes du procédé : matière, moule, machine.
- ✓ Notions de transfert thermique : convection, conduction, résistance de contact, état de surface de l'empreinte.
- ✓ Analyse du refroidissement de la pièce injectée : critère de solification, temps de cycle, formation des contraintes.
- ✓ Règles métier et optimisation par simulation du nombre et de la position des circuits de refroidissement.
- ✓ Performance de la thermique moule : nombre de Reynolds, différence de température E/S, régulateur, tour de refroidissement.
- ✓ Analyse transitoire : simulation du temps de stabilisation du moule, effet de l'isolation thermique du moule.
- ✓ Impact de la thermique moule vis-à-vis de la déformation des pièces injectées.

- ✓ Ce cours est interactif. Il est basé sur un échange entre les participants et le formateur.
- ✓ L'approche théorique est illustrée par des exemples de simulations Moldflow.
- ✓ Un support de cours est fourni pour une prise de notes personnalisées.
- Évaluation du cours : Questionnaire à choix multiples (QCM).

Analyser un rapport de rhéologie (Module 6)

Objectifs

- ✓ Savoir analyser un rapport de rhéologie pour en extraire les informations pertinantes pour le projet.
- ✓ Détecter les risques techniques et adopter une démarche corrective efficace.


Public et prérequis pour cette formation

- ✓ Techniciens et techniciens supérieurs pratiquant le moulage par injection.
- ✓ Chefs de projets et concepteurs possédant les notions de base de l'injection.
- ✓ Ingénieurs.

Programme (1 jours)

- ✓ Présentation de la simulation de l'injection et des différents logiciels commerciaux.
- ✓ Objectif de l'étude rhéologie : quand faire une étude ? Quels résultats possibles ? Pertinence de la simulation ?
- ✓ Analyse du maillage, de la matière utilisée et des conditions de moulage.
- ✓ Quelles sont les phases de moulage simulées : remplissage, compactage, déformation, prise ou non de la thermique moule.
- ✓ Comment analyser les principaux résultats : pression, température, cisaillement, temps de refroidissement ?
- Diagnostic des déformations : fibres, retraits, thermique outillage.
- ✓ Comment mettre en œuvre l'utilisation d'une contre forme ?

- ✓ Ce cours est interactif. Il est basé sur un échange entre les participants et le formateur.
- ✓ L'approche théorique est illustrée par des exemples de simulations Moldflow.
- ✓ Un support de cours est fourni pour une prise de notes personnalisées.
- Évaluation du cours : Questionnaire à choix multiples (QCM).

